5:30 PM

Optimal Management of Offshore Wind Structural Systems via Deep Reinforcement Learning

Seminar - ETSIN

Pablo G. Morato

LIÈGE université Urban & Environmental Engineering

Pablo G. Morato

Seminar ETSIN

Madrid, April 19, 2022

April 19, 2022

Research at ANAST (ULiege)

LIÈGE université Urban & Environmental Engineering

Pablo G. Morato

Seminar ETSIN

Decision-making under uncertainty

In collaboration with...

K.G. Papakonstantinou

Dept. of Civil & Environmental Engineering, The Pennsylvania State University (USA) C.P. Andriotis

Dept. of AI in Structural Design & Mechanics, TU Delft (Netherlands)

N. Hlaing

Dept. of Naval and Offshore Engineering, ULiege (Belgium)

Engineering systems

https://www.researchgate.net/publication/32382 6793_Environmental_Risks_and_Uncertainty_with _Respect_to_the_Utilization_of_Recycled_Rolling __Stocks

https://www.enidnews.com/news/ag_energy/windturbine-collapses-outside-hunter-cause-underinvestigation/article_b719d312-7cb9-11e9-9121-5b99361d68f.html

LIÈGE université Urban & Environmental Engineering

Pablo G. Morato

Seminar ETSIN

Madrid, April 19, 2022

Engineering systems

https://www.researchgate.net/publication/32382 6793_Environmental_Risks_and_Uncertainty_with _Respect_to_the_Utilization_of_Recycled_Rolling _____Stocks

https://www.enidnews.com/news/ag_energy/windturbine-collapses-outside-hunter-cause-underinvestigation/article_b719d312-7cb9-11e9-9121-5b99361d68f.html

https://www.windfarmbop.com/gearbox-in-windturbines/

Structures

Mechanical components

Healthy condition

LIÈGE université Urban & Environmental Engineering

Pablo G. Morato

Seminar ETSIN

Madrid, April 19, 2022

Engineering systems

Specific design

Low failure rate

Analytical models and/or numerical simulations

$d_{t+1} = \left[\left(1 - \frac{m}{2} \right) C_{FM} S_R^m \pi^{m/2} n + d_t^{1 - m/2} \right]^{2/(2 - m)}$

Pablo G. Morato

Seminar ETSIN

? Failure statistics

https://www.windfarmbop.com/gearbox-in-windturbines/

Structures

Mechanical components

Modeling deterioration... uncertainties

Maintenance

actions?

- Aleatory uncertainties
- Model uncertainties
- Statistical uncertainties

Pablo G. Morato

Seminar ETSIN

Physics-based and data-driven models

V: 🍥

Inspection and maintenance planning

👽 Deterioration model

Pablo G. Morato

Seminar ETSIN

V: 🍥

Inspection and maintenance planning

👽 Deterioration model

Decision-making problem

Pablo G. Morato

Seminar ETSIN

Decision-making problem

Decision-making problem

Decision-making problem

(1) Curse of history

Policy space: $\left\{ \left| \mathcal{A} \right|^{N_C} \right\}^{T_N}$

Pablo G. Morato

Policy optimization - heuristic decision rules

... alleviates computational complexity

... optimality?

Set of heuristic rules

- Equidistant inspections
- Inspection after reaching a specified threshold
- Repair after detection indication

Decision-making problem

(1) Curse of history

Policy space: $\left\{ \left| \mathcal{A} \right|^{N_C} \right\}^{T_N}$

(2) Curse of dimensionality

Modeling approach – component level

Policy optimization ...

... alleviates computational complexity

... optimality?

Set of heuristic rules

- Equidistant inspections
- Inspection after reaching a specified threshold
- Repair after detection indication

Pablo G. Morato

Seminar ETSIN

Policy optimization ...

... Partially Observable Markov Decision Processes (POMDPs)

Principled mathematical framework (Bellman's equation)

... specification ... scalability ...

Pablo G. Morato

Seminar ETSIN

Madrid, April 19, 2022

Dynamic Bayesian networks – POMDP integration

 $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{Z}, \mathcal{C}, \gamma \rangle$

States

- Damage / deterioration rate
- Damage / parameters

State augmentation

$$S_t = S_{d_t} \times S_{\tau_t}$$
 or $S_t = S_{d_t} \times S_{\theta_t}$

Pablo G. Morato

Dynamic Bayesian networks – POMDP integration

 $\left< \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{Z}, \mathcal{C}, \gamma \right>$

- Damage / deterioration rate
- Damage / parameters

Actions

- Do-nothing & no-inspection
- Do-nothing & inspection
- Perfect repair & no-inspection

Dynamic Bayesian networks – POMDP integration

 $\left< \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{Z}, \mathcal{C}, \gamma \right>$

States

- Damage / deterioration rate
- Damage / parameters

Actions

- Do-nothing & no-inspection
- Do-nothing & inspection
- Perfect repair & no-inspection

Observations

- Inspections (detection / no detection)
- Discrete observations (crack measurement)

Pablo G. Morato

Dynamic Bayesian networks – POMDP integration

↔ Transition model

$$p(s_{t+1} | s_t) = p(s_{d_{t+1}}, s_{\tau_{t+1}} | s_{d_t}, s_{\tau_t}, a_t)$$
$$p(s_{t+1} | s_t) = p(s_{d_{t+1}}, s_{\theta_{t+1}} | s_{d_t}, s_{\theta_t}, a_t)$$

 $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{Z}, \mathcal{C}, \gamma \rangle$

 a_{t+1}

 S_{t+1}

 τ_{t+1}

 $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{Z}, \mathcal{C}, \gamma \rangle$

τ,

d

0

Dynamic Bayesian networks – POMDP integration

↔ Transition model

$$p(s_{t+1} | s_t) = p(s_{d_{t+1}}, s_{\tau_{t+1}} | s_{d_t}, s_{\tau_t}, a_t)$$
$$p(s_{t+1} | s_t) = p(s_{d_{t+1}}, s_{\theta_{t+1}} | s_{d_t}, s_{\theta_t}, a_t)$$

Q Observation model

$$p(\boldsymbol{o}_{t+1} \mid \boldsymbol{s}_{t+1}) = p(\boldsymbol{o}_{t+1} \mid \boldsymbol{s}_{t+1}, \boldsymbol{a}_{t})$$

$$p(o_{t+1} | s_{t+1}) = p(o_{t+1} | s_{t+1}, a_t)$$

 a_0

*S*₀

 au_0

I&M decision problem specified as a POMDP

Transition model

 $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{Z}, \mathcal{C}, \gamma \rangle$

$$p(s_{t+1} | s_t) = p(s_{d_{t+1}}, s_{\tau_{t+1}} | s_{d_t}, s_{\tau_t}, a_t)$$

$$p(s_{t+1} | s_t) = p(s_{d_{t+1}}, s_{\theta_{t+1}} | s_{d_t}, s_{\theta_t}, a_t)$$
Observation model

$$p(o_{t+1} | s_{t+1}) = p(o_{t+1} | s_{t+1}, a_t)$$

$$p(o_{t+1} | s_{t+1}) = p(o_{t+1} | s_{t+1}, a_t)$$

Cost model $\gamma^t c_t(a_t, s_t)$ $\mathbf{E}[c_t] = \mathbf{E}[c_{ins}] + \mathbf{E}[c_{rep}] + \mathbf{E}[c_{fail}]$

LIÈGE université Urban & Environmental Engineering

Solving POMDPs – point-based solvers

Policy is a mapping from the **belief state** to the **optimal action**

Sampling belief states

Value function is piece-wise linear and convex

I&M planning: Traditional setting

Deteriorating structure

Component subjected to fatigue

$$d_{t+1} = \left[d_t^{\frac{2-m}{2}} + \left(\frac{2-m}{2}\right) C_{FM} \{S_R \pi^{0.5}\}^m n \right]^{\frac{2}{2-m}}$$

I&M decision-making problem

- Actions: Do-nothing, perfect repair *
- Observation decision: No-inspection, inspection ٠.
- Observation outcomes: detected, no detected *
- Decision horizon of 30 years *

30

25

15

Time (years)

10

20

Pablo G. Morato

Seminar ETSIN

20

15

10

-5

0

5

Crack size (mm)

I&M planning: Traditional setting

Discretization analysis – state space

I&M planning: Traditional setting

Lifetime extension planning

Deteriorating structure Offshore wind component subject to fatigue

$$d_{t+1} = \left[d_t^{\frac{2-m}{2}} + \left(\frac{2-m}{2}\right) C_{FM} \{Y \pi^{0.5} q \Gamma(1+1/h)\}^m n \right]^{\frac{2}{2-n}}$$

Lifetime extension decision-making problem

- Actions: Do-nothing, replace, decommissioning ٠.
- Observation decision: No-inspection, inspection ٠.
- Observation outcomes: detected, no-detected ٠.
- Horizon starts at year (infinite horizon) ٠.

30

Time (years)

35

25

40

Pablo G. Morato

IÈGE université

Environmenta

Seminar ETSIN

Crack size (mm)

2

15

10

5

Lifetime extension planning

Pablo G. Morato

Engineering

Pablo G. Morato

Seminar ETSIN

Madrid, April 19, 2022

System level - graphical representation

System level... structural reliability

$$p_{F_{sys}} = p(F_{sys} \mid \mathbf{F}_i) p_{\mathbf{F}_i}$$

System level... cost dependence

35

Pablo G. Morato

Engineering

Seminar ETSIN

Madrid, April 19, 2022

 $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{Z}, \mathcal{C}, \gamma \rangle$

States

- Damage / deterioration rate
- Sensor health
- Component / system failure

 $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{Z}, \mathcal{C}, \gamma \rangle$

States

- Damage / deterioration rate
- Sensor health
- Component / system failure

Actions

- Do-noth. & no-insp. / Do-noth. & insp.
- Sensor & no-insp. / Sensor & insp.
- Repair & no-sensor / Repair & sensor
- Replacement

 $\left< \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{Z}, \mathcal{C}, \gamma \right>$

States

- Damage / deterioration rate
- Sensor health
- Component / system failure

Actions

- Do-noth. & no-insp. / Do-noth. & insp.
- Sensor & no-insp. / Sensor & insp.
- Repair & no-sensor / Repair & sensor
- Replacement

Observations

- Inspections
- Monitoring
- System failure state

 $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{Z}, \mathcal{C}, \gamma \rangle$

→ Transition model

Seminar ETSIN

- Damage:
- Deterioration rate: $p(\tau_{t+1} | \tau_t, a_t)$

• Sensor health: $p(h_{t+1} | h_t, a_t)$

- System failure:
- $\mathbf{p}(f_{sys_{t+1}} | \mathbf{f}_{\mathbf{c},\mathbf{t+1}}, f_{sys_t})$

 $p(d_{t+1}, q_{t+1} | d_t, q_t, \tau_t, a_t)$

Decentralized Decoupled Multi-Actor Critic (DDMAC)

Decentralized Decoupled Multi-Actor Critic (DDMAC)

Optimal management of OW substructures Fatigue deterioration "NDE" inspections $\, {f Q} \,$ $d_{t+1} = \left[d_t^{\frac{2-m}{2}} + \left(\frac{2-m}{2}\right) C_{FM} \{Y \pi^{0.5} q \epsilon_q \Gamma(1+1/h)\}^m n \right]^{\frac{2}{2-m}} \qquad p(o_{d_t} \mid d_t) \sim 1 - \frac{1}{1 + (d_t / \chi)^b}$ $c_{ins} = 1$ $c_{rep} = 10$ $c_{sen} = 2$ Load monitoring (((•)) $p(o_a \mid q_t) \sim q_t + \mathcal{N}[0, CoV = 15\%]$ $c_{ins} = 4$ Neural networks $c_{rep} = 30$ $c_{sen} = 6$ Critic Actors 2x100 2x300 Exploration: **TensorFlow** noise 100% to 1% K Keras in 20,000 episodes $c_{fail} = 600 // c_{replac} = 350$ $10^{-4} - 10^{-5}$ $10^{-3} - 10^{-4}$ Learning rate LIÈGE université rban & Environmental Engineering Pablo G. Morato Seminar ETSIN Madrid, April 19, 2022

OW Farm

46

Optimal management of OW substructures

 $\mathbf{E}[C_{ins}]$ E[c_{sen}] $\mathbf{E}[c_{rep}] \quad \blacksquare \quad \mathbf{E}[c_{fail}]$ E[Creplac]

- Corrective maintenance (CORR) +124% ٠
- Calendar-based (CAL) +31%
- Heuristic decision rules (HEUR) +10%
- **DDMAC DRL**

LIÈGE université Jrban & Environmental Engineering

Pablo G. Morato

OW Farm

Optimal management of OW substructures

OW Farm

Optimal management of OW substructures

Concluding remarks

 Dynamic Bayesian networks and POMDPs can be combined to provide an efficient algorithmic platform for decision-making under uncertainty.

Conclusion

Concluding remarks

 POMDP-based policies outperform conventional and state-of-the-art inspection and maintenance planning methods.

Conclusion

Concluding remarks

 POMDP-DDMAC provides substantial benefits for the management of offshore wind substructures.

Engineering Pablo G. Morato

Seminar ETSIN

Conclusion

Conclusion

Future work

Decision-making problem

Life-cycle management strategies including the design stage

Post-event resilience response

Multi-objective and constrained optimization problems

Pablo G. Morato

Optimal Management of Offshore Wind Structural Systems via Deep Reinforcement Learning

Additional comments, questions ...

P.G. Morato

Pablo G. Morato

Backup slide

Deterioration rate vs parametric DBNs

 Morato, P. G., Papakonstantinou, K. G., Andriotis, C. P., Nielsen, J. S. and Rigo P. (2021). Optimal Inspection and Maintenance Planning for Deteriorating Structural Components through Dynamic Bayesian Networks and Markov Decision Processes. *Structural Safety*, accepted for publication.

Pablo G. Morato

Seminar ETSIN

Practical implications

Demonstrating cost savings

Incorporating safety constraints

- & Educating and/or disseminating
- Sharing code (software)
- Start-up company

Backup slide

V: 🍥

Gaussian hyperparameters

Influence of maintenance actions (repairs)

Stress range: scale parameter

Long-term stress range (Weibull distribution)

Expected stress range $\boldsymbol{E}[\Delta S] = \boldsymbol{q}\Gamma\left(1 + \frac{1}{h}\right)$

Strain monitoring (1 year interval)

- Rainflow counting => stress range
- Retrieve scale parameter "q"
- Consider measurement noise
- Update "q"

Safety constraints

 Andriotis, C.P. and Papakonstantinou, K.G. (2021). Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints. *Reliability Engineering & System Safety*, 212, p.107551.

Pablo G. Morato

Seminar ETSIN